Nano-metrology lab on a chip’ within reach thanks to new compact, optical sensor.

Researchers at Eindhoven University of Technology have developed a new, integrated optical sensor that provides increased resolution in measurements and paves the way for fully integrated and compact optical sensors including lasers and detectors for on-chip sensing platforms. Such sensors could play a pivotal role in accurate displacement and force measurements at the nanoscale, which is crucial for microchip and nanodevice design and evaluation. This research has been published in Nature Communications.

In the age of nanoelectronics, precision is the order of the day. For example, nanostructures can be monitored with nano-optical instrumentation – tiny, light-based systems that measure the smallest of surface variations, forces and movements. As resolution and speed are essential, optical read-out sensors based on optomechanical systems are frequently used in sensing applications such as in atomic force microscopes (AFMs). These devices generate sub-nanometer resolution images by measuring the laser light reflected by the deflection of a cantilever over a surface of interest.

However, traditional laser-based approaches such as those in AFMs can be bulky, which along with the demand for lower cost and higher resolution, motivates the need for an alternative approach. Thanks to developments in nano-optomechanical systems (NOMS), compact optical sensors for the measurement of motion, force, and mass at the nanoscale are achievable. A limiting factor though is the need for a tuneable laser with a narrow linewidth, which can be difficult to adequately incorporate on a device.

To circumvent this issue, Tianran Liu, Andrea Fiore, and colleagues from the Institute for Photonic Integration at TU/e designed a new optomechanical device with a resolution of 45 femtometers (which is about 1/1000 the size of the smallest atom) in a measurement time of a fraction of a second. Crucially, the device has an ultrawide optical bandwidth of 80 nm, removing the requirement for a tuneable laser.

TU Eindhoven New integrated device for nanometer-scale sensingWaveguides and large wavelength range

The sensor is based on an indium phosphide (InP) membrane-on-silicon (IMOS) platform, which is ideal for including passive components such as lasers or detectors. The sensor itself consists of four waveguides – structures that restrict light signals to a particular path and direction – with two waveguides suspended above two output waveguides. When a suspended waveguide is pushed towards the output waveguides on the InP membrane, the relative amount of signal carried by the output waveguides varies. Fabrication takes place via a series of lithography steps to define the waveguides and cantilever, and the final sensor consists of the transducers, actuator, and photodiodes.

One of the key advantages of this sensor is that it operates in a large range of wavelengths, which eliminates the need for an expensive laser on the device. In terms of cantilever deflection, the sensor also replicates the resolution of cantilevers in traditional, but bulky AFMs. Using this new device as a foundation, the researchers plan on developing an entire “nanometrology lab” integrated on a chip that can be used for semiconductor metrology and help in the design of the next generation of microchips and nanoelectronics.

 

 

Full paper: Tianran Liu et al., “Integrated nano-optomechanical displacement sensor with ultrawide optical bandwidth”, Nature Communications, (2020), doi: 10.1038/s41467-020-16269-7.

Source: TU Eindhoven news item

Persbericht
Om innovatie te stimuleren zou Nederland meer gebruik kunnen maken van prijsvragen en innovatieve aanbestedingen. Bedrijven en onderzoeksinstituten gaan waarschijnlijk meer uitgeven aan research & development (r&d) als ze meer subsidie krijgen. Dat zijn enkele bevindingen van het Centraal Planbureau (CPB) in de vandaag gepubliceerde update Kansrijk innovatiebeleid.

Deze publicatie bevat een overzicht van de effecten van acht verschillende maatregelen op het terrein van innovatiebeleid. Voor bedrijven is de Wet Bevordering Speur- en Ontwikkelingswerk (WBSO) een belangrijke stimulans voor hun r&d-activiteiten. Verhogen van de subsidie verhoogt waarschijnlijk de uitgaven die ze daaraan doen. Onbekend is of deze maatregelen netto bijdragen aan de maatschappelijke welvaart.

Op te richten Innovatietestfonds

Met een op te richten Innovatietestfonds kan de overheid het inzicht vergroten in de werking en effecten van innovatie-instrumenten. Internationaal gezien wordt in Nederland weinig gebruik gemaakt van innovatieve aanbestedingen en prijsvragen om oplossingen voor maatschappelijke uitdagingen te stimuleren. Ervaringen in de Verenigde Staten wijzen erop dat Nederland hierdoor belangrijke kansen mist.

De publicatie verschijnt midden in de coronacrisis. Van de maatregelen worden vooral de structurele effecten beschreven. In een aantal gevallen zullen bepaalde budgettaire effecten op korte termijn anders zijn dan op het moment van schrijven was voorzien. Dat geldt vooral voor de budgettaire effecten van maatregelen bij de WBSO en de Innovatiebox.

Actuele beschrijving van innovatiebeleid

De update Kansrijk Innovatiebeleid is onderdeel van de nieuwe reeks Kansrijk Beleid 2020, die voortbouwt op de reeks uit 2016. Deze update bevat een vernieuwde tabel en een geactualiseerde beschrijving van het innovatiebeleid. De beschouwingen uit de publicatie van 2016 zijn nog steeds geldig. Het Centraal Planbureau (CPB), het Sociaal en Cultureel Planbureau (SCP) en het Planbureau voor de Leefomgeving (PBL) publiceren deze reeks als voorbereiding op de landelijke verkiezingen in 2021. Per beleidsterrein worden de effecten van vele mogelijke en voorgestelde maatregelen op een grondige manier op een rijtje gezet.

Het belangrijke verschil met Kansrijk innovatiebeleid (2016) is de nieuwe tabel met beleidsmaatregelen. Deze vervangt de tabellen uit de eerdere studie. De beschouwingen en analyses uit Kansrijk Innovatiebeleid (2016) zijn nog steeds geldig. Om deze update zelfstandig leesbaar en actueel te houden heeft deze een nieuwe inleiding en een nieuwe beschrijving van het innovatiebeleid gekregen.

Download hier het complete rapport Kansrijk innovatiebeleid (PDF)
Bron via CPB Kansrijk innovatiebeleid update

Read the entire article on the IVAM Blog:

Will medical technology continue to be the main market for products in micro- and nanotechnology in 2020 and in the next three years? 

Please note the author addition to this article that his survey was conducted in February and early March 2020, before the COVID-19 crisis. An addendum has been added to the survey from the end of March 2020.

Source and author: Iris Lehman, IVAM blog

 

Open access to cutting-edge NMR equipment and analysis

The uNMR-NL consortium of coordinator Marc Baldus has been awarded almost 18 million euro from the National Roadmap Large-Scale Research Infrastructure. With this grant the NMR facility that is based at the Utrecht Science Park will be turned into a nationwide grid, linking all Dutch high-field NMR centers. NWO announced the news on 30 April.

Utrecht University is coordinator of the uNMR-NL consortium, led by Marc Baldus, Professor of Structural Biology. Nuclear Magnetic Resonance Spectroscopy (NMR) and Imaging (MRI) exploit the magnetic properties of atoms to non-invasively study structure and dynamics of molecules in both living organisms and materials. The project will receive 17,9 million euro from the National Roadmap Large-Scale Research Infrastructure.

NMR facility

Photo: Reinout Raijmakers (source UU)

Open access to cutting-edge NMR equipment

It’s not a first that the researchers receive such a large grant. In 2012 the uNMR-NL was granted 18,5 million euro to place the first ultra-high field instrument, a 1.2 GHz standard bore NMR spectrometer, in the Netherlands. The state-of-the-art NMR facility (YouTube video) was officially opened in 2015 and is located at Utrecht University. “Our aim is to provide nation-wide, open access to cutting-edge NMR equipment and analysis, across scientific disciplines and industrial research”, coordinator Marc Baldus explains.

Expanding the range of applications

The new grant will expand the range of applications and the NMR measurement capacity of the facility, by acquiring new and upgrading existing NMR instrumentation. A nation-wide grid will be formed linking the core center in Utrecht to other Dutch high-field NMR groups, fostering access and exchange between local centers and user groups. The uNMR-NL grid will support diverse research areas ranging from studying disease and the discovery of new medicines and materials for energy storage and conversion to improving crop production and food quality.

“I think this is the first time in the world that a whole country has made such a coherent and widespread plan to coordinate the national NMR/MRI research to maximize output and use for the Dutch society and beyond”, Baldus says. “I am very happy as coordinator for almost 10 years now that we were able to develop this. We will be able to optimally serve our current and potentially new users because our equipment will be up to date and we will together as a grid do research to optimally use NMR infrastructure and expertise for a given problem.”
uNMR-NL ultra-high field NMR facility for the Netherlands.

About uNMR-NLlogo nmr consortium

The uNMR-NL consortium consists of research groups at Utrecht University, Wageningen University, Radboud University, Leiden University, the private-public partnership TI COAST and associated members at the medical centers in Utrecht, Amsterdam, Leiden and Nijmegen.

At Utrecht University the following researchers are involved: Marc Baldus (coordinator), Hugo van Ingen, Markus Weingarth, Andrei Gurinov, Alexandre Bonvin and Gert Folkers.

Source article and photos: Utrecht University news

Surfix B.V., together with its shareholders Qurin Diagnostics B.V. and LioniX International B.V., already successfully developing bio-photonic nanochips for cancer detection and other applications, announced an accelerated development plan to allow mass-scale COVID-19 diagnosis and immunity detection with the financial support and in close collaboration with PhotonDelta.

The desktop testing device will yield reliable test results within 5 minutes and is scheduled to be available for commercial exploitation within 6-9 months. The device will be built around a photonic biochip using LioniX’ mature and proven silicon nitride based integrated optics technology (TriPleX™), a key technology within the PhotonDelta ecosystem. The surface functionalization and biochemical assay development are provided by Surfix and Qurin Diagnostics, respectively. The combination of these disciplines enables a successful, fast and accurate virus detection platform. The development will be supported by and in tight collaboration with Photon Delta (a Dutch public private partnership). The PhotonDelta support will be both in co-funding as in further future upscaling and exploitation.

Qurin Diagnostics, Surfix and LioniX International  are already working together closely on early cancer detection and have realized an ultra-sensitive biochip sensor array which will be applied for early cancer detection using urine as a liquid biopsy.

Qurin Diagnostics

Coenraad K. van Kalken, CEO of Qurin Diagnostics, said ”This collaboration confirms our strategic vision that the ultrasensitive biochip we’re jointly developing for mass scale, low-cost cancer screening is broadly applicable in  biological agri-food markets as well as in other biomedical fields. All these fields need highly accurate molecular diagnosis technology at lower cost than complex and labor intensive molecular technologies, currently used.”

Surfix

Luc Scheres CTO of Surfix said “We have developed specific nanocoatings which enhance the sensitivity, limit of detection and reliability of the photonic biochip. Of course every application comes with its own specific challenges and demands, so close collaboration with experts from other disciplines is essential to successfully develop a diagnostic test. Therefore, we are happy to strengthen our collaboration with LioniX International and Qurin Diagnostics for the accelerated development of a corona virus test.”

Lionix International

“The TriPleX™ platform has shown its capabilities and possibilities for high volume cost effective cancer diagnostics and investing in this new application is not merely a commercial driven choice, but also driven by societal importance. Since we have a solid technology base and reliable collaboration partners, who also enabled the cancer diagnostics measurements, we have large confidence in realizing a successful COVID-19 test.”, said Arne Leinse, CEO of LioniX International.

PhotonDelta

“‘This is a great example of a joint effort of partners in the PhotonDelta ecosystem to develop meaningful, low costs and effective solutions enabled with integrated photonics technology. The initiative builds upon our knowledge on ultra-sensitive biochips, which might be of utmost relevance in detecting the current COVID-19 crisis. Bio sensing is one of the long-term development programs (roadmap) within PhotonDelta where industry, universities and the entire PhotonDelta ecosystem work together on next generation solutions and testing devices on viruses and other diseases‘’, said Ewit Roos, CEO of PhotonDelta

Download the full press release (PDF)

Read more about MinacNed partners Lionix International BV and Surfix

Read more about PhotonDelta and Qurin Diagnostics

De raad van bestuur van NWO heeft zeven aanvragen in de Nationale Roadmap voor Grootschalige Wetenschappelijke Infrastructuur gehonoreerd voor een totaalbedrag van 93 miljoen euro. De middelen die het ministerie van Onderwijs, Cultuur en Wetenschap (OCW) aan NWO ter beschikking stelt voor de Nationale Roadmap Grootschalige Wetenschappelijke Infrastructuur maken de bouw of vernieuwing mogelijk van essentiële onderzoeksinfrastructuren.

De gehonoreerde wetenschappelijke infrastructuren zijn van groot belang voor het verrichten van vernieuwend wetenschappelijk onderzoek en als aanjager van maatschappelijke en economische innovatie in alle wetenschappelijke disciplines. De toekenningen maken infrastructuur mogelijk binnen de bèta/technische, de alfa/gamma disciplines en in de levenswetenschappen.

Deze infrastructuren faciliteren onderzoek naar verschillende onderwerpen zoals biodiversiteit of het gebruik van big data binnen de sociale wetenschappen. Een van de toegekende onderzoeksfaciliteiten onderzoekt de toepassingen voor een sterke magneet voor inzichten in de oorzaken van ziektes, nieuwe medicijnen, maar ook verbetering van voedselproductie en –veiligheid. Een andere faciliteit onderzoekt microbiële ecosystemen die kunnen bijdragen aan de gezondheid van mensen en duurzame productie van chemicaliën.

Minister Ingrid van Engelshoven (OCW): “Ik ben trots op de wetenschappers die vandaag zo’n mooi bedrag voor hun onderzoeksfaciliteit hebben ontvangen. Zij behoren tot de internationale top in verschillende wetenschappelijke disciplines en kunnen samen met de onderzoeksfaciliteiten vernieuwend en grensverleggend onderzoek doen en bijdragen aan oplossingen van maatschappelijke vraagtukken. Met de middelen voor de Nationale Roadmap voor Grootschalige Wetenschappelijke Infrastructuur investeren we in de kennis van morgen.”

Een permanente commissie voor strategisch advies

In 2015 werd in opdracht van het ministerie van Onderwijs Cultuur en Wetenschap door NWO een Permanente Commissie voor Grootschalige Wetenschappelijke infrastructuur ingesteld om de strategische kaders van investeringen in grootschalige wetenschappelijke infrastructuur voor langere tijd vast te leggen. Onder voorzitterschap van prof.dr.ir. C.J. van Duijn maakte de Permanente Commissie in 2016 eerst een landschapsanalyse van de grote onderzoeksfaciliteiten in Nederland. Het resultaat hiervan is gepresenteerd op een interactieve website: www.onderzoeksfaciliteiten.nl. Momenteel wordt er een nieuwe landschapsanalyse uitgevoerd en de website geactualiseerd.

Selectieprocedure

Op basis van de analyse in 2016 selecteerde de Permanente Commissie 33 onderzoeksfaciliteiten die de in de periode 2016-2020 de hoogste prioriteit hadden. Samen vormden deze grootschalige wetenschappelijke infrastructuren de Nationale Roadmap 2016. Voor de infrastructuren op deze Roadmap zijn vervolgens subsidierondes opengesteld. In 2018 zijn reeds 10 onderzoeksfaciliteiten gehonoreerd.

Voor de beoordeling van de aanvragen in deze tweede ronde stelde NWO een onafhankelijke internationale beoordelingscommissie in. Deze bestond uit 10 mannen en 5 vrouwen met een brede kennis van wetenschappelijke ontwikkelingen en ervaring met grootschalige wetenschappelijke infrastructuur. In het najaar van 2019 werden de aanvragen beoordeeld via peer review. De beoordelingscommissie selecteerde vervolgens 9 aanvragen voor interviews, die begin 2020 plaatsvonden. Aan de hand van de interviews stelde de beoordelingscommissie een prioritering op, die ter besluitvorming voorgelegd is aan de raad van bestuur van NWO.

Bron: NWO nieuws

LUMICKS, a MinacNed partner has published a news item about a recently published research article from PNAS and the implications this update has for their own products and services.

A recent publication in PNAS shows how the catalytically inactive alkyltransferase-like protein (ATL) scans and recognizes detrimental DNA alkylation lesions. The C-Trap® with correlated optical tweezers and confocal microscopy enabled researchers to investigate how ATL interacts with DNA to identify alkyl lesions and interact with associated repair proteins.

The findings can assist ongoing and future investigation on the functional characterization of ATL and its catalytically active homolog alkyltransferase ATG. They also provide insights that can be applied to regulate cancer-associated DNA damage repair during chemotherapy.

Congratulations to Dr. Ingrid Tessmer at the University of Würzburg, her lab, and all the authors involved in this work!

Lumicks research news

C-Trap OT conf ATL scanning and protein recruitment to alkyl lesions

To evaluate DNA–protein interactions, the researchers first tethered a DNA molecule between two optically trapped beads. They next introduced the DNA molecule to a microfluidic channel containing quantum dot-conjugated ATL to track the DNA–protein interactions trough kymograph analyses. This real-time single-molecule approach enabled them to track the dynamic properties and interactions of ATL during lesion scanning and recognition.

Based on fluorescence intensity, the team observed that both monomeric and oligomeric ATL rapidly diffuses along the DNA molecule in search of lesions.

The kymograph also revealed how oligomeric ATL recruits prokaryotic nucleotide excision repair (NER) protein UvrA to alkyl lesions and induces its motility on the DNA. According to the observations, the ATL–UvrA complex rapidly slides on undamaged DNA to finally stabilize at alkyl lesion sites.

These findings serve to understand the mechanisms underlying alkyl lesion repair and highlight functional characteristics that extend to highly related repair enzymes, such as AGT.

For more information, read the full article published in PNAS titled “Alkyltransferase-like protein clusters scan DNA rapidly over long distances and recruit NER to alkyl-DNA lesions”.

Are you interested in using dynamic single-molecule tools like the C-Trap® for your research? Please feel free to contact LUMICKS for more information, a demo, or a quote.

Source: LUMICKS news

Erik Bakkers, hoogleraar Advanced Nanomaterials & Devices aan de TU/e, treedt toe tot de Koninklijke Nederlandse Academie van Wetenschappen. De KNAW is het belangrijkste Nederlandse genootschap voor topwetenschappers. Bakkers’ specialiteit is ‘materialen’: hij weet zeer nauwkeurig controle te houden over hoe de kristalstructuur van nanodraden zich ontwikkelt, en dat is de sleutel tot veelgevraagde nieuwe materialen en eigenschappen. Zijn nanodraden staan mogelijk aan de basis van revoluties op drie verschillende terreinen: halfgeleiders, zonnecellen en quantumcomputers.

Bakkers (1972) loopt voorop in het bestuderen en ontwikkelen van nieuwe nanomaterialen, die niet in de natuur voorkomen en alleen kunnen worden geproduceerd door op nanoschaal deeltjes te manipuleren. Bakkers combineert fundamentele inzichten in kristalgroei met een scherp oog voor de mogelijke toepassingen van zijn werk. Zo ontwikkelt hij bijzondere kristalgroeimethodes, waarbij hij met atomaire precisie halfgeleider-nanodraden samenstelt met bijzondere eigenschappen. Zijn materiaal- en structuurcombinaties vormen de bouwstenen voor nieuwe typen zonnecellen, lichtzenders en onderdelen voor quantumcomputers.

KNAW

De KNAW is in 1808 opgericht als adviesorgaan van de regering, een taak die zij ook nu nog vervult. Het onafhankelijke genootschap is “het forum, de stem en het geweten van de wetenschap in Nederland”. Behalve Bakkers zijn er nog zeventien nieuwe leden benoemd. Daarmee komt het totaal aantal leden van de KNAW op circa 550. Twaalf van hen zijn momenteel werkzaam aan de TU/e. De benoeming is voor het leven en wordt in de wetenschappelijke wereld gezien als een grote eer. De nieuwe Akademieleden worden op een later tijdstip dit jaar geïnstalleerd.

Erik Bakkers TUE

Erik Bakkers en zijn nanodraden revoluties

Goede kans dat zijn laboratorium binnen een jaar of tien ’s werelds eerste Majorana qubits zal weten te maken, het essentiële ingrediënt voor een supersnelle quantumcomputer. Maar Erik Bakkers’ onderzoek naar nanodraden kan al veel eerder een revolutie teweegbrengen in de halfgeleiderindustrie, langs een heel andere weg. Hij doet wat lang onmogelijk leek: de meest gebruikte grondstof voor halfgeleiders – silicium – zodanig aanpassen dat het licht kan uitzenden. Dit kan de felbegeerde sleutel worden om fotonica met al haar voordelen te integreren in micro-elektronica. En trouwens: Bakkers (1972) heeft ook nog een nanodraad revolutie voor zonnecellen in petto.
Lees het achtergrondverhaal over Erik bakkers via TU Eindhoven.

Bron: TU Eindhoven nieuws.

In response to the corona crisis, the MESA+ NanoLab has been closed for development and research since 15 March. The same also applies for other buildings on campus, though several exceptions have now been made. The NanoLab, for instance, is home to a limited number of development activities that, due to their urgent nature, will be continued.

Three companies (Lionix, MedSpray and Micronit) are currently hard at work in the NanoLab, where they are developing devices that can be used to detect and help treat the coronavirus. To do so, they need access to the facilities in the NanoLab. In consultation with the faculties and with safety as our primary concern, MESA+ is constantly evaluating which activities can still take place in the NanoLab.

Lionix

Testing equipment is needed to detect the COVID-19 virus itself and to detect immunological biomarkers in the blood; rapid diagnostics that can be used to detect cases, monitor the clinical picture in patients and establishing immunity. Lionix devices are suitable to detect viruses in a ‘swab’ sample, as is common nowadays, and to analyse the course of the infection and immunity for the virus based on blood-borne biomarkers. Similar photonic devices, though with less sensitive biochips, are known to be able to detect viruses. Read more about Lionix.

MedSpray

Medspray is developing a device that can be combined with an inhaler or a ventilator to administer medication to a patient, which will also see the responsibility for administering medication shift from the supplier to the specialist. This technology has already been put into practice in collaboration with the Radboud hospital and, if proven effective, will be rolled out further.

Micronit

Micronit produces microfluidic products that make a crucial contribution to identifying the virus. Though they operate their own cleanroom, several process steps take place in the MESA+ Nanolab. Micronit initiated the Viralert Foundation, partnering up with businesses and knowledge institutions to develop tests for corona immunity. Read more about Micronit.

Research groups

Several research groups have now also come up with new corona and corona immunity tests and require access to the NanoLab for the development process. We are looking into ways in which the university and the NanoLab can support these developments without compromising on safety. For questions, please contact Gerard Roelofs, head of MESA + NanoLab. Read more about Micronit.

Source article: MESA+ news

LipoCoat, a biotech spin-off from the University of Twente has received additional funding of 1.5 million euros from several investors. The funding comes from Dutch informal investors, the High Tech Fund from Enschede and Innovation Fund Rabobank. The additional funding allows LipoCoat to bring innovations in infection control to market faster, the importance of which is all too clear in these times of coronavirus.

Improvement in medical device safety

LipoCoat specializes in developing infection control solutions for the healthcare industry, in particular for medical devices. The company is currently conducting seven research projects, mainly for multinationals that want to increase the safety of their medical devices. LipoCoat’s unique bio-inspired and non-toxic coatings protect against bacteria, viruses and infections.

The investment will be used to bring innovations in infection control to market faster. The High Tech Fund has committed 600.000 euros for equipment and supplies in LipoCoat’s brand new lab. The spin-off started in 2016 in one of the University of Twente’s labs, but has since outgrown itself. In late April, LipoCoat will open its very own lab at Kennispark Twente.

Contact lenses as the first application

Launching innovations for medical devices and the healthcare industry is time-consuming. “That is why LipoCoat focuses on product-market combinations with a fast rollout, such as the contact lens market,” said Jasper van Weerd, Founder and CEO of LipoCoat. The first contact lenses with the LipoCoat coating are in the medical approval process, with the product expected to be launched in Fall 2020. In a few years’ time, LipoCoat expects the first coated catheters to enter market. Catheter infections worldwide cause great suffering and patient discomfort. In addition, such infections increase healthcare costs by tens of billions of euros annually.

Drug development

LipoCoat is also developing a coating that can be used for the screening and testing of new medicines that involve cell culture systems. These systems are usually sensitive to pollution. When cell culture systems are contaminated, the testing of new medicines becomes unreliable. The LipoCoat coating increases the efficiency of drug screening and testing, resulting in cost reduction and better results. The solution will become available as a kit and is expected to enter market in the summer of 2020.

Improving the quality and safety of healthcare

LipoCoat’s mission is to improve the quality and safety of healthcare, which is very relevant in these times of coronavirus. In 2020, the first products will enter the market. At the same time, the LipoCoat team will continue innovating within the catheter domain. To make the leap to further growth, a Series B funding round of € 5 million is planned for mid-2021. With this investment round, the company wants to build its revenue streams, increase its development and production capacity, and expand its international footprint by gaining access to US and Asian markets.

More information: www.lipocoat.com